Note on Deduction Theorems in Contraction-Free Logics

نویسندگان

  • Karel Chvalovský
  • Petr Cintula
چکیده

In this short paper we present a finer analysis of the variants of Local Deduction Theorem in contraction-free logics. We define some natural generalisations called Implicational Deduction Theorems and study their basic properties. The hierarchy of classes of logics defined by these theorems is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systematic Construction of Natural Deduction Systems for Many-Valued Logics

A construction principle for natural deduction systems for arbitrary finitely-many-valued first order logics is exhibited. These systems are systematically obtained from sequent calculi, which in turn can be automatically extracted from the truth tables of the logics under consideration. Soundness and cut-free completeness of these sequent calculi translate into soundness, completeness and norm...

متن کامل

Systematic Construction of Natural Deduction Systems for Many-valued Logics: Extended Report

We exhibit a construction principle for natural deduction systems for arbitrary finitely-many-valued first order logics. These systems are systematically obtained from sequent calculi, which in turn can be extracted from the truth tables of the logics under consideration. Soundness and cut-free completeness of these sequent calculi translate into soundness, completeness and normal form theorems...

متن کامل

Herbrand Theorems for Substructural Logics

Herbrand and Skolemization theorems are obtained for a broad family of first-order substructural logics. These logics typically lack equivalent prenex forms, a deduction theorem, and reductions of semantic consequence to satisfiability. The Herbrand and Skolemization theorems therefore take various forms, applying either to the left or right of the consequence relation, and to restricted classe...

متن کامل

EQ-logics with delta connective

In this paper we continue development of formal theory of a special class offuzzy logics, called EQ-logics. Unlike fuzzy logics being extensions of theMTL-logic in which the basic connective is implication, the basic connective inEQ-logics is equivalence. Therefore, a new algebra of truth values calledEQ-algebra was developed. This is a lower semilattice with top element endowed with two binary...

متن کامل

Counterfactual logics: natural deduction calculi and sequent calculi

Counterfactual logics, which have a long and venerable history [3, 1, 2], have been introduced to capture counterfactual sentences, i.e. conditionals of the form “if A were the case, then B would be the case”, where A is false. If we interpret counterfactuals as material conditionals, we have that all counterfactuals are trivially true and this is an unpleasant conclusion. By means of counterfa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010